2.8 The Derivative as a Function

In this section we let the number \boldsymbol{a} vary. If we replace \boldsymbol{a} in the derivative equation we get:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{h}=\text { Definition of Derivative }
$$

Remember that $f^{\prime}(x)$ is called the derivative of f and $f^{\prime}(x)$. can be interpreted as the slope of the tangent line to the graph of f at the point $(\boldsymbol{x}, \boldsymbol{f}(\boldsymbol{x}))$.

Example: a) If $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2} \boldsymbol{x}^{2}-\boldsymbol{x}$, find $\boldsymbol{f}^{\prime}(\boldsymbol{x})$
b) Compare the graphs of \boldsymbol{f} and \boldsymbol{f} on the same plot.
a) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[2(x+h)^{2}-(x+h)\right]-\left[2 x^{2}-x\right]}{h}=\lim _{h \rightarrow 0} \frac{\left[2\left(x^{2}+2 x h+h^{2}\right)-x-h\right]-\left[2 x^{2}-x\right]}{h}$

$$
=\lim _{h \rightarrow 0} \frac{2 x^{2}+2 x h+2 h^{2}-x-h-2 x^{2}+x}{h}=\lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}-h}{h}=\lim _{h \rightarrow 0} \frac{h(4 x+2 h-1)}{h}
$$

$$
=\lim _{h \rightarrow 0} 4 x+2 h-1
$$

$$
f^{\prime}(x)=4 x-1
$$

b) Plot $f(x)$ and $f^{\prime}(x)$.

> Notice that when $\mathrm{f}^{\prime}(\mathrm{x})=0, \mathrm{f}(\mathrm{x})$ has a horizontal tangent line.

- When $\mathrm{f}^{\prime}(\mathrm{x})$ is positive, the tangent line of $f(x)$ has a positive slope.
- When $f^{\prime}(x)$ is negative, the tangent line of $f(x)$ has a negative slope.
- When $f^{\prime}(x)=0$, the tangent line is horizontal.

Example: a) If $f(x)=\frac{1-2 x}{3+x}$, find $f^{\prime}(x) \quad$ b) State the domain of $f(x)$ and $f^{\prime}(x)$.
a) $\begin{aligned} f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1-2(x+h)}{3+(x+h)}-\frac{1-2 x}{3+x}}{h} \quad \text { (find a common denominator for the fraction in the numerator) } \\ & =\lim _{h \rightarrow 0} \frac{[1-2(x+h)](3+x)-(1-2 x)(3+x+h)}{h(3+x+h)(3+x)}=\lim _{h \rightarrow 0} \frac{(1-2 x-2 h)(3+x)-(1-2 x)(3+x+h)}{h(3+x+h)(3+x)}\end{aligned}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\left(3-6 x-6 h+x-2 x^{2}-2 x h\right)-\left(3+x+h-6 x-2 x^{2}-2 x h\right)}{h(3+x+h)(3+x)} \\
& =\lim _{h \rightarrow 0} \frac{-6 h-h}{h(3+x+h)(3+x)}=\lim _{h \rightarrow 0} \frac{-7 h}{h(3+x+h)(3+x)}=\lim _{h \rightarrow 0} \frac{-7}{(3+x+h)(3+x)}=\frac{-7}{(3+x)^{2}}
\end{aligned}
$$

b) Domain of $f(x):(-\infty,-3) \cup(-3, \infty)$ Domain of $f^{\prime}(x):(-\infty,-3) \cup(-3, \infty)$

Other Notations for the Derivative:

If we use $y=f(x)$ to indicate that the independent variable is x and the dependent variable is y, then some common alternative notations for the derivative are as follows:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

The symbol \boldsymbol{D} and $\frac{\boldsymbol{d y}}{\boldsymbol{d} \boldsymbol{x}}$ (and all of the other symbols) are called differentiation operators because they indicate the operation of differentiation, which is the process of calculating a derivative.

We can write the definition of the derivative in Leibniz notation in the form: $\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$.
If we want to indicate the value of a derivative $\frac{d y}{d x}$ in Leibniz notation at a specific number or point we use the following notation: $\left.\frac{d y}{d x}\right|_{x=a}$ or $\left.\frac{d y}{d x}\right]_{x+a}$ which can also be denoted by $f^{\prime}(a)$.

Definition: A function \boldsymbol{f} is differentiable at \boldsymbol{a} if $\boldsymbol{f}^{\prime}(a)$ exists. It is differentiable on an open interval (a, b) [or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty)$] if it is differentiable at every number in the interval.

Example: Where is the function $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ differentiable?

Solution:

If $x>0$, then $|x|=x$ and we can choose h small enough that $x+h>0$ and hence $|x+h|=x+h$. Therefore, for $x>0$, we have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{(x+h)-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1
\end{aligned}
$$

and so f is differentiable for any $x>0$.

Similarly, for $x<0$ we have $|x|=-x$ and h can be chosen small enough that $x+h<0$ and so $|x+h|=-(x+h)$.

Therefore, for $x<0$,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h}=\lim _{h \rightarrow 0}(-1)=-1
\end{aligned}
$$

and so f is differentiable for any $x<0$.

Now we have to investigate what happens when $x=0$.

For $x=0$ we have to investigate

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}
\end{aligned}
$$

(if it exists)
Let's compute the left and right limits separately:

$$
\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} 1=1
$$

and

$$
\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}(-1)=-1
$$

Since these limits are different, $f^{\prime}(0)$ does not exist. Thus f is differentiable at all x except 0 .

A formula for f^{\prime} is given by

$$
f^{\prime}(x)= \begin{cases}1 & \text { if } x>0 \\ -1 & \text { if } x<0\end{cases}
$$

and its graph is shown in Figure 5(b).

Notice: The limit of $f(x)=|x|$ exists at $x=0$ but the derivative of $f(x)=|x|$ does not exist at $x=0$.

Theorem: If f is differentiable at \boldsymbol{a}, then \boldsymbol{f} is continuous at \boldsymbol{a}. However the converse of this theorem is not true. As we see above, $f(x)=|x|$ is continuous at $x=0$ but is not differentiable at $x=0$.

Here is where the derivatives fail to exist:

1. Where the function makes are sharp point or corner. 2. Vertical tangents.

2. Asymptotes

3. Oscillations

Higher Derivatives

If \boldsymbol{f} is a differentiable function, then it's derivative, f^{\prime}, is also a function, so f^{\prime} 'may have a derivative of its own, denoted by $\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$.
$f^{\prime \prime}$ is called the second derivative of f. Using Leibniz notation, we write the second derivative of $y=f(x)$ as $\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}$. Other notations include $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$ and $\boldsymbol{y}^{\prime \prime}$.

In general, we can interpret a second derivative as a rate of change of a rate of change. The most familiar example of this is acceleration. The instantaneous rate of change of velocity with respect to time is called the acceleration $a(t)$. Thus the acceleration function is the derivative of the velocity function and is therefore the second derivative of the position function:

$$
a(t)=v^{\prime}(t)=s^{\prime \prime}(t) \text { or in Leibniz notation, } a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
$$

We can also find the third derivative of a function f, which is denoted by $f^{\prime \prime \prime} . f^{\prime \prime}$ is the derivative of the second derivative: $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$. The alternative notation is $y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}$

If the position function is given by $s(t)$, we can interpret the third derivative by $s^{\prime \prime \prime}=\left(s^{\prime \prime}\right)^{\prime}=\boldsymbol{a}^{\prime}$

We call the derivative of acceleration function jerk, denoted by $j . \quad j=\frac{d a}{d t}=\frac{d^{3} s}{d t^{3}}$
Notice that the jerk, j, is the rate of change of acceleration. Since the differentiation process can be continued, we could find the $4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}, \ldots, \mathrm{n}^{\text {th }}$ derivative of a function f, which is denoted by $\boldsymbol{f}^{(n)}$.
We can also write $\boldsymbol{y}^{(\boldsymbol{n})}=\boldsymbol{f}^{(\boldsymbol{n})}(\boldsymbol{x})=\frac{d^{n} \boldsymbol{y}}{d x^{n}}$.
Example: Using the definition of a derivative and the function $f(x)=3 x^{2}+2 x+1$, find $f^{\prime}, f^{\prime \prime}, \& f^{\prime \prime \prime}$.

$$
\begin{aligned}
& f^{\prime}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
&=\lim _{h \rightarrow 0} \frac{\left[3(x+h)^{2}+2(x+h)+1\right]-\left[3 x^{2}+2 x+1\right]}{h} \\
&=\lim _{h \rightarrow 0} \frac{\left[3\left(x^{2}+2 x h+h^{2}\right)+2 x+2 h+1\right]-3 x^{2}-2 x-1}{h} \\
&=\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}+2 x+2 h+1-3 x^{2}-2 x-1}{h} \\
&=\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}+2 h}{h} \\
&=\lim _{h \rightarrow 0} \frac{h(6 x+3 h+2)}{h} \\
&=\lim _{h \rightarrow 0} 6 x+3 h+2 \\
& \boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{6 x + 2} \\
& f^{\prime \prime}(x)=\left(f^{\prime}\right)^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \\
&= \lim _{h \rightarrow 0} \frac{6(x+h)+2-6 x-2}{h} \\
&= \lim _{h \rightarrow 0} \frac{6 x+6 h+2-6 x-2}{h} \\
&= \lim _{h \rightarrow 0} \frac{6 h}{h} \\
&= \lim _{h \rightarrow 0} 6 \\
& \boldsymbol{f}^{\prime \prime}(\boldsymbol{x})=\mathbf{6}
\end{aligned}
$$

Notice that $f^{\prime \prime}(x)$ is a constant function and its graph is the horizontal line $y=6$, which means the slope of the tangent will be 0 . Therefore for all values of x ,

$$
f^{\prime \prime \prime}(x)=0
$$

